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Controllability Ensured Leader Group Selection
on Signed Multiagent Networks

Baike She, Siddhartha Mehta , Member, IEEE, Chau Ton , and Zhen Kan

Abstract—Leader–follower controllability on signed multiagent
networks is investigated in this paper. Specifically, we consider
a dynamic signed multiagent network, where the agents interact
via neighbor-based Laplacian feedback and the network allows
positive and negative edges to capture cooperative and com-
petitive interactions among agents. The agents are classified as
either leaders or followers, thus forming a leader–follower signed
network. To enable full control of the leader–follower signed net-
work, controllability ensured leader group selection approaches
are investigated in this paper, that is, identifying a small sub-
set of nodes in the signed network, such that the selected nodes
are able to drive the network to a desired behavior, even in
the presence of antagonistic interactions. In particular, graph-
ical characterizations of the controllability of signed networks
are first developed based on the investigation of the interac-
tion between network topology and agent dynamics. Since signed
path and cycle graphs are basic building blocks for a variety of
networks, the developed topological characterizations are then
exploited to develop leader selection methods for signed path
and cycle graphs to ensure leader–follower controllability. Along
with illustrative examples, heuristic algorithms are also devel-
oped showing how leader selection methods developed for path
and cycle graphs can be potentially extended to more general
signed networks. In contrast to existing results that mainly focus
on unsigned networks, this paper characterizes controllability
and develops leader selection methods for signed networks. In
addition, the developed results are generic, in the sense that they
are not only applicable to signed networks but also to unsigned
networks, since unsigned networks are a particular case of signed
networks that only contain positive edges.

Index Terms—Leader group selection, multiagent system,
network controllability, signed graph.

I. INTRODUCTION

LEADER–FOLLOWER multiagent systems that coordi-
nate and cooperate over an information exchange network

have been increasingly applied in science and engineering.
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Typical applications of leader–follower systems include
distributed coordination in robotic networks [1]–[4], formation
and propagation of opinions in social networks [5]–[7],
and analysis of biochemical reaction in biological networks
in [8] and [9]. In such applications, agents are classified as
either leaders or followers, where leaders are a small subset
of the agents tasked to direct the overall network behavior,
while the remaining agents, i.e., followers, are influenced by
the leaders via the underlying connectivity of the network to
perform desired tasks. The success of these applications relies
on the capability of driving the network to a desired state by
external controls via selected leaders, i.e., network controlla-
bility. Consequently, network controllability must be ensured
in network design to enable leader–follower control. However,
network controllability is deeply coupled with agent dynamics
and the underlying network topology whose interactions are
still largely unexplored.

A. Related Work

Based on the interactions among agents, multiagent net-
works can be classified as either cooperative or competitive
networks. Cooperative networks are commonly modeled as
unsigned graphs containing only positive edge weights, where
positive weights indicate cooperative relationships between
agents. Average consensus is a typical example of coop-
erative networks, where agents positively value information
collected from neighboring agents and achieve group consen-
sus via collaboration [10]. If a graph allows to admit negative
edge weights, it is called signed graph. Signed graphs are
widely used to represent networks with antagonistic interac-
tions [11]. For instance, a positive/negative weight in signed
graphs can be used to model friend/adversary relationship in
social networks [12] and collaborative/competitive relationship
in multiagent systems [13].

Controllability on cooperative networks has been exten-
sively studied in the literature. Leader–follower controllability
was considered for the first time in [14], where the net-
work controllability was characterized based on the spectral
analysis of the system matrix. Graph theoretic approaches
were then explored to provide characterizations of network
controllability. For instance, it was established in [15] that
symmetry with respect to a single leader can potentially lead to
uncontrollability. Graphical and topological characterizations
of network controllability were investigated in [16] and [17].
Graph-distance-based lower bounds on the rank of the control-
lability matrix were developed in [18]. Sufficient and necessary
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conditions for network controllability were developed for
tree topologies [19], grid graphs [20], and path and cycle
graphs [21]. Other than graphical characterizations of network
controllability, structural properties of cooperative networks
were also exploited from matrix-theoretical perspectives in
the works of [22]–[26] to reveal the connections between
network controllability and underlying graphs. Other repre-
sentative works that investigate network controllability include
the results in [27]–[29]. Besides characterizing network con-
trollability, various methods, e.g., combinatorial [30] and
heuristic [31] selection methods, were developed to select
leaders to ensure controllability of given networks. In [32],
leader selection in complex networks was investigated, where,
in addition to ensure network controllability, control energy
was also taken into account when selecting leaders. In [33],
leaders were selected with either minimum number or min-
imum energy cost to ensure the controllability of dynamic
networks. Other representative works regarding leader selec-
tion for network controllability include [34]–[36]. However,
all of the aforementioned results focus on the character-
ization of network controllability and leader selection on
cooperative networks (i.e., unsigned graphs), without con-
sidering networks with potential antagonistic interactions. In
addition, due to the existence of negative weights in signed net-
works, most existing analysis tools (e.g., graph symmetry) and
leader selection approaches are no longer applicable to signed
networks.

Recent emergence of the control and analysis of signed
graphs with applications in social networks [37], brain net-
works [38], and complex networks [39] motivates the research
on controllability problems, where such networks often need
to be driven to desirable states by external inputs via selected
control nodes within the network. For instance, the controlla-
bility of signed graphs were partially studied via structural
balance in the works of [40]–[43]. As a variant of con-
trollability, herdability over signed and directed graphs was
considered in [44], which investigated the reachability of a
specific set, rather than the whole state space as in con-
trollability. A submodular optimization-based leader selection
approach was developed in [45] to ensure leader–follower
consensus in signed networks. However, network design in
terms of leader group selection to ensure the controllability of
the signed network remains largely unattended in the litera-
ture. Therefore, this paper is particularly motivated to study
the leader group selection to ensure controllability of signed
networks.

B. Contributions

In this paper, leader–follower controllability on signed
networks is investigated. Specifically, we consider signed
noncooperative networks, which admit both positive and neg-
ative edges. The signed network is capable of representing a
variety of practical network applications, such as social net-
work, fault tolerant networks, and secure networks, where
the network may have both friendly and adversarial inter-
actions. Motivated by the broad range of potential applica-
tions, it is of particular interest in this paper to identify a

small subset of nodes in the signed network, such that the
selected nodes are able to drive the network to a desired
behavior, even in the presence of antagonistic interactions.
In other words, this paper focuses on leader selection to
ensure the controllability of signed networks. In particular,
based on the classic controllability notations in [15], graph-
inspired topological characterizations of the leader–follower
controllability of signed networks are first developed. Such
characterizations investigate the interaction between the under-
lying network topology and agent dynamics and pave the way
for leader selection on signed networks. As the signed path
and cycle graphs are basic building blocks for a variety of
networks, the revealed topological characterizations are then
exploited to develop leader selection methods for signed path
and cycle graphs, where topological properties (e.g., struc-
tural balance) are explored to extend existing controllability
analysis from unsigned to signed networks. Along with illus-
trative examples, heuristic algorithms are developed showing
how leader selection methods developed for path and cycle
graphs can be potentially extended for more general signed
networks.

The contributions of this paper are multifold. First, con-
trollability ensured leader group selection on signed networks
is considered. Despite extensive study of controllability of
unsigned networks, relatively few research effort focuses on
signed networks. To the best of our knowledge, this paper is
one of the first attempts to consider leader group selection
on signed networks from graphical perspective. Specifically,
we develop leader selection rules for signed path and cycle
networks, which provides constructive approaches to select
leaders for network controllability. Since most networks can
be considered as a combination of path and cycle networks,
the developed leader selection rules on path and cycle graphs
can be potentially extended to more complex and sophisticated
networks.

Second, the developed leader group selection approaches are
generic, in the sense that they not only hold for signed graphs
but also for unsigned graphs, since unsigned graphs are a par-
ticular case of signed graphs that only consider positive edges.
For instance, the leader selection approaches developed in this
paper are consistent with the results developed for unsigned
graphs in [20] and [46], while the leader selection approaches
developed for unsigned graphs are not generally applicable to
signed graphs.

Third, in contrast to most existing matrix-theoretical
approaches to characterize network controllability, graph-
inspired understandings of network controllability are real-
ized in this paper. Specifically, we investigate the relation-
ship between the network controllability and the underlying
topology and characterize how leader-to-leader and leader-
to-follower connections affect the controllability of a signed
network with Laplacian dynamics. Such graphical character-
izations of network controllability are able to provide more
intuitive and effective means in selecting leaders for net-
work controllability. As a result, the leader group selection
methods developed for signed path and cycle graphs in this
paper can be conveniently employed without requiring any
matrix-theoretical analysis.
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II. PROBLEM FORMULATION

Consider a multiagent network represented by an undi-
rected signed graph G = (V, E,W), where the node set
V = {v1, . . . , vn} and the edge set E ⊂ V × V represents the
agents and the interactions between pairs of agents, respec-
tively. An undirected edge (vi, vj) ∈ E indicates that vi and
vj are able to interact with each other (e.g., mutual infor-
mation exchange). The potential interactions among agents
are captured by the adjacency matrix W ∈ R

n×n, where
wij �= 0 if (vi, vj) ∈ E and wij = 0 otherwise. No self-
loop is considered, i.e., wii = 0 ∀i = 1, . . . , n. Different
from classical unsigned graphs that contain non-negative adja-
cency matrix, wij : E → {±1} in this paper admits positive or
negative weight to capture collaborative or competitive rela-
tionships between agents, thus resulting in a signed graph G.
Specifically, vi and vj are called positive neighbors of each
other if wij = 1 and negative neighbors if wij = −1, where
positive neighborhood indicates cooperative interactions while
negative neighborhood indicates noncooperative interactions
between vi and vj, respectively.

A path of length k − 1 in G is a concatenation of distinct
edges {(v1, v2), (v2, v3), . . . , (vk−1, vk)} ⊂ E . A cycle is a path
with identical starting and end node, i.e., v1 = vk. Graph G is
connected if there exists a path between any pair of nodes in V .
The neighbor set of vi is defined as Ni = {vj|(vi, vj) ∈ E}, and
the degree of vi, denoted as di ∈ Z

+, is defined as the number
of its neighbors, i.e., di = |Ni| = ∑

j∈Ni
abs(wij), where |Ni|

denotes the cardinality of Ni and abs(wij) denotes the absolute
value of wij. The signed graph Laplacian of G is defined as
L(G) � D − W , where D � diag{d1, . . . , dn} is a diagonal
matrix. Due to the consideration of negative weights, unlike
unsigned graphs, −L(G) in (1) is no longer a Metzler matrix1

and its row/column sums are not necessary zero.
Let x(t) = [x1(t), . . . , xn(t)]T ∈ R

n denote the stacked sys-
tem states,2 where each entry xi(t) ∈ R represents the state
of agent vi. Suppose the system states evolve according to the
following Laplacian dynamics:

ẋ(t) = −L(G)x(t) (1)

where the graph Laplacian L(G) indicates that each agent
vi updates its state xi only taking into account the states of
its neighboring agents, i.e., xj ∈ Ni. Various networked sys-
tems feature the Laplacian dynamics described in (1). For
instance, formation control [48], flocking [49], and consen-
sus [10], [50], [51] are typical applications of the Laplacian
dynamics.

Suppose the agent set V is classified into a leader set
Vl ⊂ V and a follower set Vf ⊂ V with Vl ∪ Vf = V , thus
forming a typical leader–follower network. Without loss of
generality, assume that the first m agents form the follower
set Vf = {v1, . . . , vm}, while the remaining agents form the

1Metzler matrices are matrices with non-negative off-diagonal entries [47].
2If multidimensional system states (e.g., xi ∈ R

m) are considered, the
Laplacian dynamics in (1) can be trivially extended to ẋ(t) = −L(G)x(t),
where L(G) is augmented to L(G) � L(G) ⊗ Im by the m-dimensional
identity Im and the matrix Kronecker product ⊗. Without loss of general-
ity, the subsequent development will focus on the case that xi ∈ R for ease
of presentation.

leader set Vl = {vm+1, . . . , vn}. Let x(t) = [xT
f (t), xT

l (t)]T ∈ R
n

be the aggregated system states, where xf (t) ∈ R
m and

xl(t) ∈ R
n−m represent the aggregated states of followers and

leaders, respectively. Similar to [15], the graph Laplacian in (1)
can be partitioned as

L(G) =
[ Lf (G) Lfl(G)

Llf (G) Ll(G)

]

(2)

with Lf (G) ∈ R
m×m, Lfl(G) = LT

lf (G) ∈ R
m×(n−m), and

Ll(G) ∈ R
(n−m)×(n−m). Based on (1) and (2), the dynamics

of the followers become

ẋf (t) = −Lf (G)xf − Lfl(G)u(t) (3)

where u(t) � xl(t) denotes the exogenous control signal dic-
tated by the leaders. In leader–follower networks, leaders
are tasked to direct the overall behavior of the network by
influencing the followers. The dynamics in (3) signify that
the followers are influenced or controlled by the leaders via
the connectivity of the network, where the exogenous signal
becomes the leader’s control input.

Definition 1 (Leader–Follower Controllability): Provided
that the leaders are completely controllable and dictated by
exogenous input u(t), a leader–follower network with dynam-
ics of (1) is called controllable, if the followers’ state xf (t)
in (3) can be driven to any target state by a proper design of
u(t). Mathematically, if the controllability matrix

C =
[
−Lfl LfLfl · · · (−1)mLm−1

f Lfl

]

has full row rank, the leader–follower system in (3) is
controllable.

From Definition 1, the leader–follower controllability is
dependent on the system matrices Lf and Lfl in (3). Since
L(G) is determined by the topological structure of G and the
roles of nodes, i.e., leaders or followers, L(G) can vary signif-
icantly with different leader set, resulting either a controllable
or uncontrollable network. Therefore, the primary objective of
this paper is to characterize the relationship between leader–
follower controllability and network topology and identify
a subgroup of nodes (i.e., the leader set) in G such that
leader–follower controllability in Definition 1 is ensured.

Remark 1: Different from the dynamics in (3) where the
leaders have direct influence on the followers’ states, an
alternative leader–follower network model employed in the
works [40], [41], [46] is

ẋ(t) = −Lx(t) + Bu(t) (4)

where B = [bij] ∈ R
n×(n−m) is a binary matrix with bij �= 0

if vi is connected to a leader vj and bij = 0 otherwise. The
model in (4) indicates leaders indirectly influence the follow-
ers through both the followers’ states and their own dynamics.
Despite different representations in (3) and (4), the discussion
in [46] indicates the two different models can be equiva-
lently reformulated into each other, thus yielding the same
controllability. In other words, if the selected leaders yield a
controllable leader–follower network with dynamics (3), the
controllability result holds for the same set of leaders on a
network with dynamics (4).
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(a) (b)

Fig. 1. (a) Controllable network with the leader set {3, 4, 5}. (b) Network
controllability is invariant with respect to arbitrary removal of leader-to-leader
connections (i.e., dashed lines).

III. TOPOLOGICAL CHARACTERIZATION OF

LEADER–FOLLOWER CONTROLLABILITY

Lemma 1 [52]: Consider a linear time-invariant system

ẋ(t) = Ax(t) + Bu(t) (5)

where A ∈ R
n×n is the system matrix, B ∈ R

n×m is the input
matrix, and x(t) ∈ R

n and u(t) ∈ R
m represent the system

states and the control input, respectively. Let E(·) denote the
set of left eigenvectors of a matrix. Per the well-known Popov–
Belevitch–Hautus test, the system in (5) is uncontrollable if
and only if there exists a left eigenvector ν ∈ E(A) (i.e., νTA =
λνT for some eigenvalue λ) such that νTB = 0m, where 0m

is an m-dimensional vector of all zeros. In other words, the
system (5) is controllable if and only if ν /∈ ker(BT), ∀ν ∈
E(A), where ker(·) indicates the kernel space.

Proposition 1: Consider a signed leader–follower net-
work G, where the followers evolve according to (3) and the
leaders are driven by an exogenous input, i.e., xl(t) = u(t).
Provided that the follower-to-follower and leader-to-follower
connections are intact, the leader–follower controllability is
invariant to any addition, removal, or change of weight in
leader-to-leader connections.

Note that the follower dynamics (3) can be represented
using (5), which indicates that the leader–follower controlla-
bility is only dependent on the system matrices Lf and Lfl.
Since any change to leader-to-leader connections within G
can only affect the structure of Ll(G) while Lfl(G) and Lf (G)

remain the same, Proposition 1 is an immediate consequence
of Definition 1 and Lemma 1.

Example 1: Proposition 1 implies that leader-to-leader con-
nections can be freely altered without affecting the controlla-
bility of the original network. To illustrate this idea, consider
a controllable signed graph with the leader set {3, 4, 5} in
Fig. 1(a), where negative edges are labeled with −1 and pos-
itive edges are not labeled for the simplicity of presentation.
According to Proposition 1, it can be verified that the net-
work in Fig. 1(b) remains controllable if any leader-to-leader
connections (i.e., dashed lines) are removed.

As an immediate consequence of Lemma 1, Proposition 1
provides a topological characterization of network controlla-
bility, which is instructive in constructing a controllable graph
from a set of controllable subgraphs and paves a way to con-
trollability ensured leader selection in the subsequent section.
To show how a controllable graph can be constructed, the

case of two subgraphs is first considered in Proposition 2,
which is then extended to the case of multiple subgraphs in
Proposition 3.

First, consider two leader–follower signed graphs G1 =
(V1, E1,W1) and G2 = (V2, E2,W2), where Gi, i = {1, 2},
has a follower set Vfi = {1, . . . , mi} and a leader set Vli =
{mi +1, . . . , ni} with Vfi ∪Vli = Vi and Vfi ∩Vli = ∅, where mi

and ni denote the cardinality of the follower set and its node
set, respectively. The edge set Ei and weight matrix Wi indi-
cate the underlying connections among leaders and followers
within Gi, i = {1, 2}.

Proposition 2: Provided that the two signed graphs G1 =
(V1, E1,W1) and G2 = (V2, E2,W2) are controllable and
evolve according to (1), G0 = (V0, E0,W0) remains control-
lable if G0 is constructed such that: 1) V0 = V1 ∪ V2 with the
follower set Vf 0 = {1, . . . , m1 + m2} and the leader set Vl0 =
{m1 + m2 + 1, . . . , n1 + n2}, where the nodes are reindexed,
without loss of generality, as the first m1+m2 nodes are follow-
ers and the rest nodes are leaders; 2) E0 = E1 ∪ E2 ∪ E ′ where

E ′ ⊂ Vl1×Vl2; and 3) W0 =
[ W1 W̄
W̄T W2

]

∈ R
(n1+n2)×(n1+n2)

where W̄ indicates the weights associated with the
edges in E ′.

Proof: Let xfi ∈ R
mi and ui ∈ R

ni−mi , i = {1, 2}, be the
stacked followers’ states and the exogenous input by the lead-
ers in Gi, respectively, which evolve according to the following
dynamics:

G1 : ẋf 1(t) = −Lf 1(G1)xf 1 − Lfl1(G1)u1(t)

G2 : ẋf 2(t) = −Lf 2(G2)xf 2 − Lfl2(G2)u2(t)

where Lf 1 ∈ R
m1×m1 , Lfl1 ∈ R

m1×(n1−m1), Lf 2 ∈ R
m2×m2 , and

Lfl2 ∈ R
m2×(n2−m2)are obtained following similar partitions

in (2) from L1(G1) and L2(G2). Let E(Lf 1) and E(Lf 2) be the
set of left eigenvectors of Lf 1 and Lf 2, respectively. Since G1
and G2 are controllable, based on Lemma 1, no eigenvector
ν ∈ E(Lf 1) and ϑ ∈ E(Lf 2) are orthogonal to Lfl1 and Lfl2,
respectively.

Let xf 0 = [xT
f 1, xT

f 2]T and u0 = [uT
1 , uT

2 ]T denote the follow-
ers’ states and the exogenous input by the leaders in G0. Based
on the definition, G0 is constructed by connecting G1 and G2
in a way that its node set V0 is formed by the union of V1 and
V2, and its edge set E0 keeps E1 and E2 while including a new
subset E ′. Since E ′ ⊂ Vl1 × Vl2, the additional edges E ′ are
restricted to leader-to-leader connections within Vl1 and Vl2,
which only affects the structure of Ll(G0) in L(G0). Therefore,
the followers’ state xf 0 evolves according to

ẋf 0(t) = −Lf 0(G0)xf 0 − Lfl0(G0)u0(t)

where

Lf 0 =
[ Lf 1 0m1×m2

0m2×m1 Lf 2

]

and

Lfl0 =
[ Lfl1 0m1×(n2−m2)

0m2×(n1−m1) Lfl2

]

.

Clearly, for any eigenvector ν ∈ E(Lf 1) and ϑ ∈ E(Lf 2), the
vectors

[
νT 0T

m2

]T
and

[
0T

m1
ϑT

]T
are the eigenvectors
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of Lf 0. Since,

[
νT 0T

m2

]
[ Lf 1 0m1×m2

0m2×m1 Lf 2

]

= [
νTLf 1 0T

m2

]

�= 0m1+m2

and
[
0T

m1
ϑT]

[ Lf 1 0m1×m2

0m2×m1 Lf 2

]

= [
0T

m1
ϑTLf 2

]

�= 0m1+m2

according to Lemma 1, G0 remains controllable.
To extend Proposition 2 to the case of multiple sub-

graphs, consider a set of signed graphs Gi = (Vi, Ei,Wi),
i = {1, . . . , n}, where each has a follower set Vfi = {1, . . . , mi}
and a leader set Vli = {mi + 1, . . . , ni} with mi and ni

indicating cardinality of the follower set and its node set,
respectively.

Proposition 3: Provided a set of controllable signed graphs
Gi, i = {1, . . . , n}, evolving according to (1), G0 =
(V0, E0,W0) remains controllable if G0 is constructed such
that: 1) V0 = ⋃n

i=1 Vi; 2) E0 = ⋃n
i=1 Ei ∪ E ′ where

E ′ ⊂ ∏n
i=1 Vli, indicating the additional edges E ′ are

restricted to leader-to-leader connections within the leader
sets Vli; and 3) W0 indicates the weights associated with the
edges in E0.

The proof of Proposition 3 is omitted here, since it can be
easily verified following similar procedure as in the proof of
Proposition 2.

Remark 2: Proposition 3 provides a constructive topo-
logical design approach in generating a combined graph
that preserves network controllability from a set of control-
lable subgraphs. Besides constructing a controllable graph,
Proposition 3 also provides insights on leader selection to ren-
der network controllability. For instance, if a given graph can
be partitioned into a set of connected subgraphs, as long as the
selected leaders ensure controllability for each subgraph and
are connected following the rules in Proposition 3, the given
graph is guaranteed to be controllable by Proposition 3. This
idea will be further explored in the subsequent sections. In
addition, the results developed in Proposition 1–3 are generic
in the sense that they hold for not only signed graphs but also
for unsigned graphs.

Example 2: Fig. 2 shows how a controllable graph can be
constructed from a set of controllable subgraphs. Fig. 2(a)
contains two subgraphs, which become controllable if the
nodes {1, 5} and {2, 3} are selected as leaders, respec-
tively, as shown in Fig. 2(b). The combined graph in
Fig. 2(c) is constructed by connecting the two leaders {1, 2}.
It can be verified that the combined graphs in Fig. 2(c)
remains controllable, since its construction follows the rules
in Proposition 2. It is worth pointing out that only suffi-
cient conditions to preserve network controllability are devel-
oped in Proposition 2. There might exist different ways in
connecting leaders to preserve network controllability. As
a different construction, the combined graph in Fig. 2(d)
is constructed by including three new edges [i.e., (1, 2),
(1, 3), and (5, 2)], which is also controllable according to
Proposition 2.

(a) (b)

(c) (d)

Fig. 2. Examples of constructing a controllable graph from controllable
subgraphs. (a) Two subgraphs. (b) Each subgraph is controllable provided that
the nodes {1, 5} and {2, 3} are selected as leaders, respectively. (c) Combined
graph is controllable if a new leader-to-leader connection (i.e., the edge (1, 2))
is created. (d) Combined graph remains controllable if new leader-to-leader
connections [i.e., the edges (1, 2), (1, 3), and (5, 2)] are created.

IV. LEADER SELECTION FOR SIGNED PATH

AND CYCLE GRAPHS

Based on the developed topological characterizations of the
controllability of signed networks in Section III, this section
focuses on developing sufficient conditions on selecting leader
nodes for the controllability of signed networks. Specifically,
two particular graphs, signed path and cycle graph, are con-
sidered first. A path graph is a graph where all internal nodes
have degree two except that two end nodes have degree one. A
cycle graph is a graph where all nodes have degree two. Path
and cycle graphs are basic building blocks for various sophis-
ticated networks [47]. For instance, grid and lattice networks
can be generated by Cartesian products of path graphs [53]
while complex circulant networks can be constructed and ana-
lyzed based on cycle graphs [54]. Consequently, later in this
section, we will show how the developed leader selection rules
for path and cycle graphs can be potentially extended to more
general signed networks.

As a key tool to study the controllability of signed networks,
structural balance is introduced.

Definition 2 (Structural Balance): A signed graph G =
(V, E,W) is structurally balanced if the node set V can be
partitioned into V1 and V2 with V1 ∪V2 = V and V1 ∩V2 = ∅,
where wij > 0 if vi, vj ∈ Vq, q ∈ {1, 2}, and wij < 0 if vi ∈ Vq

and vj ∈ Vr, q �= r, and q, r ∈ {1, 2}.
Definition 2 indicates that vi and vj are positive neigh-

bors if they are from the same subset, i.e., either V1 or V2,
and negative neighbors if vi and vj are from different sub-
set. To characterize structural balance, necessary and sufficient
conditions are provided.

Lemma 2 [11]: A connected signed graph G is structurally
balanced if and only if any of the following equivalent
conditions holds.

1) All cycles of G are positive, i.e., the product of edge
weights on any cycle is positive.
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2) There exists a diagonal matrix Ξ = diag{σ1, . . . , σn}
with σi ∈ {±1} such that ΞWΞ has non-negative
entries.

3) 0 is an eigenvalue of graph Laplacian L(G).
Lemma 3: Consider a structurally balanced signed graph G

with nodes partitioned into V1 and V2. If leaders are selected
from the same subset (i.e., either V1 or V2) and followers
evolve according to (3), the leader–follower controllability of
G remains the same as its corresponding unsigned graph G′,
where G′ = (V, E,W ′) has the same node and edge set as G
except that W ′ = ΞWΞ = abs(W), where Ξ is defined
in Lemma 2 and abs(W) denotes the entry-wise absolute
value of W .

Proof: This lemma is a variant of [40, Th. 3] that accounts
for the follower dynamics in (3). See the Appendix for the
proof.

A. Signed Path Graph

Let Gp = (V, E,W) denote a signed path graph, where
V = {1, . . . , n} and E = {(i, i+1)|i ∈ {1, . . . , n−1}} represent
the node and edge set, respectively, and the weight matrix W ∈
R

n×n indicates associated positive or negative weights in E .
Theorem 1: A signed path graph Gp = (V, E,W) with fol-

lowers evolving according to (3) is controllable if one of the
end nodes (i.e., v1 or vn) is selected as leader.

Proof: As indicated in [11, Corollary 1], a spanning tree is
always structurally balanced. As a particular case of the span-
ning tree, the path graph Gp is thus structurally balanced. Since
Gp is structurally balanced, its node set can be partitioned into
V1 and V2 as in Definition 2. If one leader is considered,
the leader must be selected from either V1 and V2, i.e., the
same subset. Hence, Lemma 3 indicates that the controllabil-
ity of Gp is equivalent to its corresponding unsigned graph
G′

p = (V, E,W ′), where W ′ consists of non-negative edge
weights. Given that an unsigned path graph is controllable if
an end node is selected as leader in [14] and [15], it can be
concluded that the signed path graph Gp is also controllable if
an end node is selected as leader from Lemma 3.

Remark 3: As indicated in [15], unsigned path graph is con-
trollable if one of the end nodes is selected as leader. Although
the leader selection approach developed in Theorem 1 is simi-
lar to that of [15], the inherent analysis is completely different.
Specifically, the controllability analysis of unsigned path graph
in [15] is based on graph symmetry. Although symmetry with
respect to a single leader is sufficient to conclude uncontrolla-
bility of unsigned graphs, symmetry alone, as indicated in [41],
is in general not sufficient to lead to uncontrollability of signed
graphs. Therefore, instead of using graph symmetry, struc-
tural balance is exploited in Theorem 1 to characterize the
controllability of signed graphs.

The following theorem extends the result in Theorem 1 to
multileader selection.

Theorem 2: A signed path graph Gp with followers evolving
according to (3) is controllable if multiple adjacent nodes in
Gp are selected as leaders.

Proof: The case of two leaders is first considered in
this proof, which will then be extended to include multiple

leaders. Suppose that an arbitrary pair of adjacent nodes
vk and vk+1, ∀k ∈ {1, . . . , n − 1}, in Gp are selected as
leaders. Let Gp1 = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}} denote
the subgraph of Gp with the leader node vk and Gp2 =
{{vk+1, vk+2}, . . . , {vn−1, vn}} denote the subgraph of Gp with
the leader node vk+1, respectively. Based on Theorem 1, Gp1
and Gp2 are both controllable, since vk and vk+1 are the end
nodes of the subgraph Gp1 and Gp2, respectively. Since Gp can
be constructed by connecting the two leaders in Gp1 and Gp2
while keeping the rest graph intact, Proposition 1 indicates
that Gp will remain controllable.

If n adjacent nodes are selected as leaders, following similar
argument above, Gp can always be partitioned into controllable
subpath graphs. Iteratively invoking Proposition 1 indicates
Gp is always controllable if adjacent nodes are selected as
leaders.

Remark 4: Theorem 2 relaxes the constraint in Lemma 3
that leaders have to be selected from the same parti-
tioned subset. Specifically, Theorem 2 indicates that, for
signed path graphs, leaders are allowed to be selected
from different partitioned subsets, as long as they are
adjacent nodes in Gp. In addition, the developed leader
selection approach in Theorem 2 is more convenient in
topology design for leader–follower controllability, since no
computation for the partitioned subset is required as in
Lemma 3.

A signed tree is a particular topology where any two vertices
are connected by exactly one simple path and the edges admit
negative weights. Networks with tree topology have been
broadly applied to model multiagent networks, cyber-physical
systems, smart grid, and power networks (see [10], [55] for
more applications). Since a tree graph can be naturally par-
titioned into connected path graphs, the subsequent theorem
extends leader selection rules developed in Theorems 1 and 2
to signed trees.

Let Gt = (V, E,W) denote a signed tree, where V , E ,
and W represent the node set, edge set, and weight matrix,
respectively. Since Gt is a tree with no cycles, it is well known
that |E | = |V| − 1.

Theorem 3: Suppose that a signed tree Gt can be partitioned
into a set of signed path graphs {Gpi}, i ∈ {1, . . . , m}, with Gt =
∪m

i=1Gpi. The tree Gt is controllable, if selected leaders ensure
the controllability of each path graph in {Gpi} and Gt is recon-
structed by only connecting leaders from each path graph.

The proof is omitted here, since Theorem 3 is an
immediate consequence of Theorems 1 and 2 and
Proposition 1. Example 3 is provided to illustrate
Theorem 3.

Example 3: Consider a signed tree shown in Fig. 3(a),
where the roles (i.e., leaders or followers) are not assigned
yet. To determine leaders that ensure leader–follower control-
lability, the tree can be first partitioned into five paths, i.e.,
{5, 10, 14}, {6, 11}, {3, 7, 12, 15}, {8, 13}, and {2, 1, 4, 9}. If
the leaders are selected as {1, 2, 3, 4, 5, 6, 8, 9}, then each of
the path graphs is controllable by Theorem 1. Since the path
graphs are connected in a way that only leaders from each path
are connected to form the tree, the tree is controllable based
on Theorem 2 and Proposition 1. Therefore, it can be verified
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(a) (b)

Fig. 3. (a) Signed tree graph. (b) Controllable signed tree graph with the
marked nodes {1, 2, 3, 4, 5, 6, 8, 9} selected as leaders.

Fig. 4. Same signed tree graph in Fig. 3(a) is considered, where a different
set of nodes are selected as leaders to ensure the network controllability.

that the selected leaders ensure leader–follower controllability
of the tree graph.

Remark 5: To the best of our knowledge, few existing
results consider leader selection from graphical perspective
for ensured controllability on signed tree graphs. Theorem 1
provides a sufficient condition for selecting control nodes to
ensure the controllability of a signed tree graph. In contrast to
matrix-theoretical design and analysis approaches in the litera-
ture, the developed leader selection approach is graph-inspired,
which is more amenable in topology design.

Since the result developed in Theorem 1 is based on the par-
tition of a tree graph into path graphs, different partitions could
result in different sets of leaders. For instance, Fig. 4 considers
the same signed tree graph as in Fig. 3(a), where a different
set of nodes, i.e., {1, 2, 4, 5, 8}, is selected as leaders. After
reorganizing the nodes, Fig. 4 contains three path graphs, i.e.,
{11, 6, 2, 5, 10, 14},{1, 3, 7, 12, 15}, and {9, 4, 8, 13}. Based
on Theorem 2, the three path graphs are controllable with
respect to the selected leaders. Since the three path graphs
are connected such that only leaders are connected, the com-
bined signed tree graph is controllable by Theorem 3. Future
research will focus on developing optimal partitions of a
tree graph to obtain the smallest set of leaders that ensure
controllability.

B. Signed Cycle Graph

A cycle graph Gc = (V, E,W) is defined similar to Gp,
except that the edge set in Gc is defined as E = {(i, i
mod (n) + 1)|i ∈ {1, . . . , n}}. If Gc is structurally balanced,
based on Lemma 2, there exists a diagonal matrix Ξ such
that ΞWΞ = abs(W) is non-negative. The graph G′

c =
(V, E, abs(W)) is then called the unsigned graph of Gc, since
G′

c no longer has negative edge weights.
Lemma 4 [46]: An unsigned cycle graph is controllable if

two adjacent nodes are chosen as leaders.
This section focuses on extending the leader selection

approach for unsigned cycle graphs developed in Lemma 4
to signed cycle graphs, where the weight matrix W can take
negative entries.

Lemma 5: Consider a signed cycle graph Gc = (V, E,W),
where the followers evolve according to (3). The leader–
follower controllability of Gc is equivalent to that of its
sign-reversed graph Ḡc = (V, E,−W), where the weight
matrix W in Gc is replaced by −W in Ḡc.

Proof: Since every node in a cycle graph has degree two, the
degree matrix D of a cycle graph is 2In, where In represents
the n-dimensional identity matrix. Without loss of generality,
suppose the first m nodes are followers and the rest n−m nodes
are leaders. Graph Laplacian of Gc can then be partitioned as

L = D − W =
[

2Im − Wf −Wfl

−WT
fl 2In−m − Wl

]

(6)

where Wf ∈ R
m×m, Wfl ∈ R

m×(n−m), and Wl ∈
R

(n−m)×(n−m). By the dynamics (1) and (6), the followers
evolve according to

ẋf (t) = −(
2Im − Wf

)
xf − (−Wfl

)
u(t)

where xf ∈ R
m and u(t) ∈ R

n−m denote the followers’ states
and leaders’ input, respectively. Hence, based on Definition 1,
the leader–follower controllability of Gc is completely deter-
mined by 2In − Wf and −Wfl.

Consider the sign reversed cycle graph Ḡc. Similarly, the
leader–follower controllability of Ḡc is determined by 2In+Wf

and Wfl. Note that the set of eigenvectors of 2In−Wf is identi-
cal to that of 2In+Wf . In addition, since 2In−Wf and 2In+Wf

are symmetric matrices, their right and left eigenvectors are
equal. Let μ be an eigenvector of 2In −Wf (or 2In +Wf ). If
μ ∈ ker(−WT

fl ), it is always true that μ ∈ ker(WT
fl ). Similarly,

if μ /∈ ker(−WT
fl ), it will also be true that μ /∈ ker(WT

fl ).

Therefore, based on Lemma 1, the controllability of Gc is
equivalent to that of Ḡc.

Theorem 4: Provided that all followers evolve according
to (3), a signed cycle graph Gc is controllable if any two
adjacent nodes in Gc are selected as leaders.

Proof: Different from path graphs that are inherently struc-
turally balanced, cycle graphs may not be structurally bal-
anced. In addition, when considering two adjacent nodes
as leaders, the sign of interleader edge introduces addi-
tional challenge to the analysis of leader–follower con-
trollability. Therefore, based on the topological structure
of Gc and the sign of interleader edge, four cases are
discussed.
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Case 1: Structurally balanced Gc with positive interleader
edge. Since Gc is structurally balanced, its node set V can be
partitioned into two subsets V1 and V2. Based on Lemma 2,
the positive interleader edge indicates that the two leaders are
from the same subset, i.e., either V1 or V2. In addition, there
exists an unsigned cycle graph G′

c, which has the same edge
and node set as Gc except that the edge weights in G′

c are all
positive. Given that leaders are selected from the same subset,
Lemma 3 indicates that the controllability of Gc is equivalent
to that of G′

c. Since G′
c is controllable from Lemma 4 if two

adjacent nodes are selected as leaders, it concludes that Gc is
also controllable with similar leader selection approach from
Lemma 3.

Case 2: Structurally unbalanced Gc with negative inter-
leader edge. Since Gc is structurally unbalanced cycle graph,
Lemma 2 indicates that Gc is a negative cycle, which implies
there exists an odd number of negative edges in Gc. Since
graph controllability is invariant to changes of interleader
edges from Proposition 1, the controllability of Gc with nega-
tive interleader edge will remain the same if the sign of inter-
leader edge flips from negative to positive. After flipping the
sign to be positive, Gc will now contain an even number of neg-
ative edges and becomes structurally balanced from Lemma 2,
which implies that Gc is controllable due to the equivalent to
case 1.

Case 3: Structurally balanced Gc with negative inter-
leader edge. Based on Lemma 5, the controllability of Gc

is invariant if all of its signs are flipped. Based on the
number of negative edges in Gc, two subcases are further
discussed.

1) If Gc in this case has an even number of edges, it must
have an even number of negative edges and an even
number of positive edges from Lemma 2. After flip-
ping all of its signs, Gc remains structurally balanced
but with positive interleader edge, which implies that
Gc in this case is controllable due to the equivalence to
case 1.

2) If Gc has an odd number of edges, it must have an even
number of negative edges and an odd number of pos-
itive edges, due to Lemma 2. After flipping all of its
signs, Gc becomes G∗

c , which is structurally unbalanced
with positive interleader edge and equivalent to case 4
below. If the sign of any leader–follower edge in G∗

c is
flipped again, G∗

c becomes G�
c , which is structurally bal-

anced with positive interleader edge due to the change
of negative edges from an odd number of to an even
number. Following similar procedure as in the proof of
Lemma 5, it can be trivially verified that the change
of sign of any leader–follower edge will not affect the
controllability of the system. In other words, the control-
lability of G�

c remains the same as G∗
c , which is then the

same as Gc due to Lemma 5. Since G�
c is structurally

balanced with positive interleader edge, which is the
same as case 1, G�

c is controllable, and hence Gc is also
controllable.

Case 4: Structurally unbalanced Gc with positive interleader
edge. Since this case has been discussed in case 3, Gc is
controllable.

Algorithm 1 Leader Selection for Signed Graph

1: procedure INPUT:(Graph G(V,E,W));
Output: The set of leaders Vl

2: Calculate the node degree di for each node vi ∈ V ;
3: Select nodes vi with di > 2 to form Vl;
4: Use graph partition techniques (e.g., [56]–[58]) to partition G into cycles and

paths based on the selected high degree nodes in Vl;
5: for Each cycle or path do
6: if the cycle or path is controllable then
7: Keep the selected leaders in Vl;
8: else
9: Apply Theorems 1-4 to select appropriate nodes as leaders and update Vl;

10: end if
11: end for
12: Update Vl based on Propositions 1-3 to ensure the network controllability;
13: Output Vl;
14: end procedure

Based on cases 1–4, Gc is controllable if adjacent nodes are
selected as leaders.

Remark 6: To the best of our knowledge, the leader selec-
tion rules developed in Theorem 4 is one of the first attempts
to consider signed cycle graphs. In addition, the leader
selection approach developed in Theorem 4 is valid for all
types of signed cycle graphs, no matter it is structurally
balanced or not.

The following corollary is an immediate consequence of
Theorem 4.

Corollary 1: A signed path graph is controllable if two end
nodes are selected as leaders.

Given a controllable signed cycle graph where two adja-
cent nodes are selected as leaders, if the edge connecting the
two leaders is removed, the cycle graph will turn into a path
graph with leaders on two ends. Since the removal of leader-
to-leader edges will not affect controllability of the system
from Proposition 1, the path graph is controllable if two end
nodes are selected as leaders. In addition to Theorems 1–3,
Corollary 1 provides an alternative way to select leaders for
ensured controllability.

C. Extensions and Discussion

This section shows how the leader selection rules developed
for signed path and cycle graphs in previous sections can be
potentially extended to more general signed networks. Since
path and cycle graphs are basic building blocks for general
signed graphs, the idea of leader selection in this section is to
first partition the general signed graphs into a set of path and
cycle graphs, where the results developed in Theorems 1–4
can be applied.

Motivated by this idea, heuristic leader selection rules
are developed in Algorithm 1. In Algorithm 1, we start
from identifying nodes in a given signed graph whose node
degree is greater than two. Since nodes in either path and
cycle graphs have degree at most two, the reason to iden-
tify nodes with degree more than two is to find out those
nodes that potentially connect path or cycle graphs. Those
high degree nodes will facilitate the partition of the signed
graph into individual path and cycle graphs, where exist-
ing graph partition techniques are applicable (e.g., graph
partition into paths in [56], cycles in [57], and both paths
and cycles in [58]). Once the graph is partitioned into a
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(a) (b) (c) (d)

Fig. 5. (a) Signed graph with 29 nodes. (b) Initial selection of leader nodes (i.e., nodes with degree more than two) are marked. (c) Based on the initially
selected leader node, the signed graph is partitioned into a set of path and cycle graphs. (d) Update the leader nodes based on the rules in Theorems 1–4 to
ensure the resulting leader–follower network is controllable.

set of path and cycle graphs, the leader selection rules
developed in Theorems 1–4 and Propositions 1–3 can be
immediately applied to generate a controllable leader–follower
network.

To illustrate Algorithm 1, Example 4 is provided.
Example 4: Consider the signed graph in Fig. 5(a),

where the objective is to select a set of leaders such
that the leader–follower network is controllable. Following
rules in Algorithm 1, the leader nodes (i.e., high degree
nodes {8, 9, 11, 13, 15, 21, 22, 25, 29}) are first identified in
Fig. 5(b). Based on the selected leader nodes and graph
partition techniques in [56]–[58], the signed graph is par-
titioned into a set of path and cycle graphs, which are
shown in dashed lines. The leader selection rules devel-
oped in Theorems 1–4 are then applied to ensure that
each path and cycle graph are controllable. For instance,
the selected nodes {8, 9} ensure the controllability of the
cycle graph formed by {1, 2, 3, 4, 8, 9}. The leader set is
then updated to include more nodes (i.e., addition leaders
{10, 14}) whenever necessary such that the individual path
and cycle graphs are connected satisfying Propositions 1–3,
which ensues the controllability of the original signed
graph.

Remark 7: Note that Algorithm 1 is based on parti-
tioning a general signed graph into a set of path and
cycle graphs. As indicated in [56]–[58], particular classes
of graph topologies, such as trees or loosely connected
graphs, can be efficiently partitioned into a small num-
ber of path and cycle graphs. Other types of graphs, such
as densely connected graphs or complete graphs, can be
more challenging to be partitioned. Therefore, the devel-
oped leader selection rules perform better on graph topologies
that are amenable to be partitioned into path and cycle
graphs.

Remark 8: The leader selection rules developed in
Algorithm 1 are only sufficient conditions to ensure network
controllability. In other words, the selected leader set from
Algorithm 1 is by no means an optimal set. There may exist
other leader group selections that can also ensure network
controllability but with fewer leaders. For instance, minimal
controllability problems were considered in [30], where a
greedy heuristic approach was developed to ensure network
controllability while minimizing the number of selected
leaders. Robust minimal controllability was investigated

in [59], where additional constraints were included in the
minimal controllability problem. However, only unsigned
graphs were considered in [30] and [59]. Nevertheless,
the developed optimization approach and the unraveled
fundamental relationship between minimal controllability and
network topological sparsity can be potentially helpful in
developing leader group selection rules for signed graphs.
In particular, the solution of the minimal controllability
problem in [30] and [59] is heavily dependent on the
network topological sparsity. Such topological properties
have been extensively studied on path and cycle graphs
in the works of [20] and [46]. Since our approach is
based on the partition of a general signed graph into
a set of path and cycle graphs, additional research will
therefore leverage tools from [20], [30], [46], and [59] to
investigate minimal controllability problems over signed
graphs.

V. CONCLUSION

Leader selection on signed multiagent networks for ensured
controllability is considered in this paper. We developed
graph-inspired topological characterizations of the controlla-
bility of signed networks, based on which leader selection
methods are developed for signed path and cycle graphs.
Heuristic algorithms are also developed showing how leader
selection methods developed for path and cycle graphs
can be potentially extended to more general signed net-
works. Although the effectiveness of the developed leader
selection rules is demonstrated via examples, there might
exist different leader sets that are capable of ensuring net-
work controllability with additional constraints (e.g., mini-
mal leader number). Future research will consider extend-
ing the results in this paper taking into account additional
constraints.

APPENDIX

PROOF OF LEMMA 3

Suppose G contains m followers and n − m leaders. Since
W ′ = ΞWΞ in the unsigned graph G′, the graph Laplacian
of G′ is

L(G′) = D(G′) − ΞWΞ = ΞL(G)Ξ (7)
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where the fact that D(G′) = D(G) and ΞD(G)Ξ = D(G) are
used. Based on (2), the graph Laplacian in (7) can be further
expanded as

L(G′) =
[

Ξf 0
0 Ξl

][ Lf (G) Lfl(G)

Llf (G) Ll(G)

][
Ξf 0
0 Ξl

]

=
[

ΞfLf (G)Ξf ΞfLfl(G)Ξl

ΞlLlf (G)Ξf ΞlLl(G)Ξl

]

(8)

where Ξf ∈ R
m×m and Ξf ∈ R

(n−m)×(n−m) are diagonal
matrices.

For notional simplicity, let A � ΞfLf (G)Ξf and B �
ΞfLfl(G)Ξl. The follower dynamics over G′ can then be
written from (1) and (8) as

ẋf (t) = −Axf − Bu(t) (9)

whose controllability can be verified from

rank
{[

B AB · · · Am−1B
]}

= rank
{[

ΞfLflΞl ΞfLfLflΞl · · · ΞfLm−1
f LflΞl

]}
(10)

where Ξf Ξf = Im is used. If leaders are selected from the
same set (i.e., either V1 or V2), then based on the properties of
Ξf in Lemma 2, we have either LflΞl = Lfl or LflΞl = −Lfl.
Hence, the rank of controllability matrix in (10) can be further
simplified as

rank
{[

B AB · · · Am−1B
]}

= rank
{
±Ξf

[
Lfl LfLfl · · · Lm−1

f Lfl

]}

= rank
{[

Lfl LfLfl · · · Lm−1
f Lfl

]}

which indicates that the controllability of (9) remains
the same as the controllability of the original system
ẋf (t) = −Lf (G)xf − Lfl(G)u(t) over G.
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